planner.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[4]; // set the max speeds
  47. float axis_steps_per_unit[4];
  48. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. // The current position of the tool in absolute steps
  58. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  59. static float previous_speed[4]; // Speed of previous path line segment
  60. static float previous_nominal_speed; // Nominal speed of previous path line segment
  61. extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
  62. #ifdef AUTOTEMP
  63. float autotemp_max=250;
  64. float autotemp_min=210;
  65. float autotemp_factor=0.1;
  66. bool autotemp_enabled=false;
  67. #endif
  68. //===========================================================================
  69. //=================semi-private variables, used in inline functions =====
  70. //===========================================================================
  71. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  72. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  73. volatile unsigned char block_buffer_tail; // Index of the block to process now
  74. //===========================================================================
  75. //=============================private variables ============================
  76. //===========================================================================
  77. #ifdef PREVENT_DANGEROUS_EXTRUDE
  78. bool allow_cold_extrude=false;
  79. #endif
  80. #ifdef XY_FREQUENCY_LIMIT
  81. // Used for the frequency limit
  82. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  83. static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
  84. static long y_segment_time[3]={0,0,0};
  85. #endif
  86. // Returns the index of the next block in the ring buffer
  87. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  88. static int8_t next_block_index(int8_t block_index) {
  89. block_index++;
  90. if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
  91. return(block_index);
  92. }
  93. // Returns the index of the previous block in the ring buffer
  94. static int8_t prev_block_index(int8_t block_index) {
  95. if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
  96. block_index--;
  97. return(block_index);
  98. }
  99. //===========================================================================
  100. //=============================functions ============================
  101. //===========================================================================
  102. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  103. // given acceleration:
  104. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  105. {
  106. if (acceleration!=0) {
  107. return((target_rate*target_rate-initial_rate*initial_rate)/
  108. (2.0*acceleration));
  109. }
  110. else {
  111. return 0.0; // acceleration was 0, set acceleration distance to 0
  112. }
  113. }
  114. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  115. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  116. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  117. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  118. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  119. {
  120. if (acceleration!=0) {
  121. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  122. (4.0*acceleration) );
  123. }
  124. else {
  125. return 0.0; // acceleration was 0, set intersection distance to 0
  126. }
  127. }
  128. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  129. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  130. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  131. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  132. // Limit minimal step rate (Otherwise the timer will overflow.)
  133. if(initial_rate <120) {initial_rate=120; }
  134. if(final_rate < 120) {final_rate=120; }
  135. long acceleration = block->acceleration_st;
  136. int32_t accelerate_steps =
  137. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  138. int32_t decelerate_steps =
  139. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  140. // Calculate the size of Plateau of Nominal Rate.
  141. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  142. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  143. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  144. // in order to reach the final_rate exactly at the end of this block.
  145. if (plateau_steps < 0) {
  146. accelerate_steps = ceil(
  147. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  148. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  149. accelerate_steps = min(accelerate_steps,block->step_event_count);
  150. plateau_steps = 0;
  151. }
  152. #ifdef ADVANCE
  153. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  154. volatile long final_advance = block->advance*exit_factor*exit_factor;
  155. #endif // ADVANCE
  156. // block->accelerate_until = accelerate_steps;
  157. // block->decelerate_after = accelerate_steps+plateau_steps;
  158. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  159. if(block->busy == false) { // Don't update variables if block is busy.
  160. block->accelerate_until = accelerate_steps;
  161. block->decelerate_after = accelerate_steps+plateau_steps;
  162. block->initial_rate = initial_rate;
  163. block->final_rate = final_rate;
  164. #ifdef ADVANCE
  165. block->initial_advance = initial_advance;
  166. block->final_advance = final_advance;
  167. #endif //ADVANCE
  168. }
  169. CRITICAL_SECTION_END;
  170. }
  171. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  172. // acceleration within the allotted distance.
  173. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  174. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  175. }
  176. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  177. // This method will calculate the junction jerk as the euclidean distance between the nominal
  178. // velocities of the respective blocks.
  179. //inline float junction_jerk(block_t *before, block_t *after) {
  180. // return sqrt(
  181. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  182. //}
  183. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  184. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  185. if(!current) { return; }
  186. if (next) {
  187. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  188. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  189. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  190. if (current->entry_speed != current->max_entry_speed) {
  191. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  192. // for max allowable speed if block is decelerating and nominal length is false.
  193. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  194. current->entry_speed = min( current->max_entry_speed,
  195. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  196. } else {
  197. current->entry_speed = current->max_entry_speed;
  198. }
  199. current->recalculate_flag = true;
  200. }
  201. } // Skip last block. Already initialized and set for recalculation.
  202. }
  203. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  204. // implements the reverse pass.
  205. void planner_reverse_pass() {
  206. uint8_t block_index = block_buffer_head;
  207. if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  208. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  209. block_t *block[3] = { NULL, NULL, NULL };
  210. while(block_index != block_buffer_tail) {
  211. block_index = prev_block_index(block_index);
  212. block[2]= block[1];
  213. block[1]= block[0];
  214. block[0] = &block_buffer[block_index];
  215. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  216. }
  217. }
  218. }
  219. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  220. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  221. if(!previous) { return; }
  222. // If the previous block is an acceleration block, but it is not long enough to complete the
  223. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  224. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  225. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  226. if (!previous->nominal_length_flag) {
  227. if (previous->entry_speed < current->entry_speed) {
  228. double entry_speed = min( current->entry_speed,
  229. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  230. // Check for junction speed change
  231. if (current->entry_speed != entry_speed) {
  232. current->entry_speed = entry_speed;
  233. current->recalculate_flag = true;
  234. }
  235. }
  236. }
  237. }
  238. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  239. // implements the forward pass.
  240. void planner_forward_pass() {
  241. uint8_t block_index = block_buffer_tail;
  242. block_t *block[3] = { NULL, NULL, NULL };
  243. while(block_index != block_buffer_head) {
  244. block[0] = block[1];
  245. block[1] = block[2];
  246. block[2] = &block_buffer[block_index];
  247. planner_forward_pass_kernel(block[0],block[1],block[2]);
  248. block_index = next_block_index(block_index);
  249. }
  250. planner_forward_pass_kernel(block[1], block[2], NULL);
  251. }
  252. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  253. // entry_factor for each junction. Must be called by planner_recalculate() after
  254. // updating the blocks.
  255. void planner_recalculate_trapezoids() {
  256. int8_t block_index = block_buffer_tail;
  257. block_t *current;
  258. block_t *next = NULL;
  259. while(block_index != block_buffer_head) {
  260. current = next;
  261. next = &block_buffer[block_index];
  262. if (current) {
  263. // Recalculate if current block entry or exit junction speed has changed.
  264. if (current->recalculate_flag || next->recalculate_flag) {
  265. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  266. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  267. next->entry_speed/current->nominal_speed);
  268. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  269. }
  270. }
  271. block_index = next_block_index( block_index );
  272. }
  273. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  274. if(next != NULL) {
  275. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  276. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  277. next->recalculate_flag = false;
  278. }
  279. }
  280. // Recalculates the motion plan according to the following algorithm:
  281. //
  282. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  283. // so that:
  284. // a. The junction jerk is within the set limit
  285. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  286. // acceleration.
  287. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  288. // a. The speed increase within one block would require faster accelleration than the one, true
  289. // constant acceleration.
  290. //
  291. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  292. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  293. // the set limit. Finally it will:
  294. //
  295. // 3. Recalculate trapezoids for all blocks.
  296. void planner_recalculate() {
  297. planner_reverse_pass();
  298. planner_forward_pass();
  299. planner_recalculate_trapezoids();
  300. }
  301. void plan_init() {
  302. block_buffer_head = 0;
  303. block_buffer_tail = 0;
  304. memset(position, 0, sizeof(position)); // clear position
  305. previous_speed[0] = 0.0;
  306. previous_speed[1] = 0.0;
  307. previous_speed[2] = 0.0;
  308. previous_speed[3] = 0.0;
  309. previous_nominal_speed = 0.0;
  310. }
  311. #ifdef AUTOTEMP
  312. void getHighESpeed()
  313. {
  314. static float oldt=0;
  315. if(!autotemp_enabled){
  316. return;
  317. }
  318. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  319. return; //do nothing
  320. }
  321. float high=0.0;
  322. uint8_t block_index = block_buffer_tail;
  323. while(block_index != block_buffer_head) {
  324. if((block_buffer[block_index].steps_x != 0) ||
  325. (block_buffer[block_index].steps_y != 0) ||
  326. (block_buffer[block_index].steps_z != 0)) {
  327. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  328. //se; mm/sec;
  329. if(se>high)
  330. {
  331. high=se;
  332. }
  333. }
  334. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  335. }
  336. float g=autotemp_min+high*autotemp_factor;
  337. float t=g;
  338. if(t<autotemp_min)
  339. t=autotemp_min;
  340. if(t>autotemp_max)
  341. t=autotemp_max;
  342. if(oldt>t)
  343. {
  344. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  345. }
  346. oldt=t;
  347. setTargetHotend0(t);
  348. }
  349. #endif
  350. void check_axes_activity() {
  351. unsigned char x_active = 0;
  352. unsigned char y_active = 0;
  353. unsigned char z_active = 0;
  354. unsigned char e_active = 0;
  355. unsigned char fan_speed = 0;
  356. unsigned char tail_fan_speed = 0;
  357. block_t *block;
  358. if(block_buffer_tail != block_buffer_head) {
  359. uint8_t block_index = block_buffer_tail;
  360. tail_fan_speed = block_buffer[block_index].fan_speed;
  361. while(block_index != block_buffer_head) {
  362. block = &block_buffer[block_index];
  363. if(block->steps_x != 0) x_active++;
  364. if(block->steps_y != 0) y_active++;
  365. if(block->steps_z != 0) z_active++;
  366. if(block->steps_e != 0) e_active++;
  367. if(block->fan_speed != 0) fan_speed++;
  368. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  369. }
  370. }
  371. else {
  372. #if FAN_PIN > -1
  373. if (FanSpeed != 0){
  374. analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
  375. }
  376. #endif
  377. }
  378. if((DISABLE_X) && (x_active == 0)) disable_x();
  379. if((DISABLE_Y) && (y_active == 0)) disable_y();
  380. if((DISABLE_Z) && (z_active == 0)) disable_z();
  381. if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
  382. #if FAN_PIN > -1
  383. if((FanSpeed == 0) && (fan_speed ==0)) {
  384. analogWrite(FAN_PIN, 0);
  385. }
  386. if (FanSpeed != 0 && tail_fan_speed !=0) {
  387. analogWrite(FAN_PIN,tail_fan_speed);
  388. }
  389. #endif
  390. #ifdef AUTOTEMP
  391. getHighESpeed();
  392. #endif
  393. }
  394. float junction_deviation = 0.1;
  395. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  396. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  397. // calculation the caller must also provide the physical length of the line in millimeters.
  398. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  399. {
  400. // Calculate the buffer head after we push this byte
  401. int next_buffer_head = next_block_index(block_buffer_head);
  402. // If the buffer is full: good! That means we are well ahead of the robot.
  403. // Rest here until there is room in the buffer.
  404. while(block_buffer_tail == next_buffer_head) {
  405. manage_heater();
  406. manage_inactivity(1);
  407. LCD_STATUS;
  408. }
  409. // The target position of the tool in absolute steps
  410. // Calculate target position in absolute steps
  411. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  412. long target[4];
  413. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  414. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  415. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  416. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  417. #ifdef PREVENT_DANGEROUS_EXTRUDE
  418. if(target[E_AXIS]!=position[E_AXIS])
  419. if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
  420. {
  421. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  422. SERIAL_ECHO_START;
  423. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  424. }
  425. #ifdef PREVENT_LENGTHY_EXTRUDE
  426. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  427. {
  428. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  429. SERIAL_ECHO_START;
  430. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  431. }
  432. #endif
  433. #endif
  434. // Prepare to set up new block
  435. block_t *block = &block_buffer[block_buffer_head];
  436. // Mark block as not busy (Not executed by the stepper interrupt)
  437. block->busy = false;
  438. // Number of steps for each axis
  439. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  440. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  441. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  442. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  443. block->steps_e *= extrudemultiply;
  444. block->steps_e /= 100;
  445. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  446. // Bail if this is a zero-length block
  447. if (block->step_event_count <= dropsegments) { return; };
  448. block->fan_speed = FanSpeed;
  449. // Compute direction bits for this block
  450. block->direction_bits = 0;
  451. if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
  452. if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
  453. if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
  454. if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
  455. block->active_extruder = extruder;
  456. //enable active axes
  457. if(block->steps_x != 0) enable_x();
  458. if(block->steps_y != 0) enable_y();
  459. #ifndef Z_LATE_ENABLE
  460. if(block->steps_z != 0) enable_z();
  461. #endif
  462. // Enable all
  463. if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
  464. if (block->steps_e == 0) {
  465. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  466. }
  467. else {
  468. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  469. }
  470. float delta_mm[4];
  471. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  472. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  473. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  474. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  475. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
  476. block->millimeters = fabs(delta_mm[E_AXIS]);
  477. } else {
  478. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  479. }
  480. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  481. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  482. float inverse_second = feed_rate * inverse_millimeters;
  483. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  484. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  485. #ifdef OLD_SLOWDOWN
  486. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  487. #endif
  488. #ifdef SLOWDOWN
  489. // segment time im micro seconds
  490. unsigned long segment_time = lround(1000000.0/inverse_second);
  491. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
  492. if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  493. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  494. }
  495. }
  496. #endif
  497. // END OF SLOW DOWN SECTION
  498. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  499. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  500. // Calculate and limit speed in mm/sec for each axis
  501. float current_speed[4];
  502. float speed_factor = 1.0; //factor <=1 do decrease speed
  503. for(int i=0; i < 4; i++) {
  504. current_speed[i] = delta_mm[i] * inverse_second;
  505. if(fabs(current_speed[i]) > max_feedrate[i])
  506. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  507. }
  508. // Max segement time in us.
  509. #ifdef XY_FREQUENCY_LIMIT
  510. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  511. // Check and limit the xy direction change frequency
  512. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  513. old_direction_bits = block->direction_bits;
  514. if((direction_change & (1<<X_AXIS)) == 0) {
  515. x_segment_time[0] += segment_time;
  516. }
  517. else {
  518. x_segment_time[2] = x_segment_time[1];
  519. x_segment_time[1] = x_segment_time[0];
  520. x_segment_time[0] = segment_time;
  521. }
  522. if((direction_change & (1<<Y_AXIS)) == 0) {
  523. y_segment_time[0] += segment_time;
  524. }
  525. else {
  526. y_segment_time[2] = y_segment_time[1];
  527. y_segment_time[1] = y_segment_time[0];
  528. y_segment_time[0] = segment_time;
  529. }
  530. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  531. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  532. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  533. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  534. #endif
  535. // Correct the speed
  536. if( speed_factor < 1.0) {
  537. for(unsigned char i=0; i < 4; i++) {
  538. current_speed[i] *= speed_factor;
  539. }
  540. block->nominal_speed *= speed_factor;
  541. block->nominal_rate *= speed_factor;
  542. }
  543. // Compute and limit the acceleration rate for the trapezoid generator.
  544. float steps_per_mm = block->step_event_count/block->millimeters;
  545. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  546. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  547. }
  548. else {
  549. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  550. // Limit acceleration per axis
  551. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  552. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  553. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  554. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  555. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  556. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  557. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  558. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  559. }
  560. block->acceleration = block->acceleration_st / steps_per_mm;
  561. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  562. #if 0 // Use old jerk for now
  563. // Compute path unit vector
  564. double unit_vec[3];
  565. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  566. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  567. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  568. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  569. // Let a circle be tangent to both previous and current path line segments, where the junction
  570. // deviation is defined as the distance from the junction to the closest edge of the circle,
  571. // colinear with the circle center. The circular segment joining the two paths represents the
  572. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  573. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  574. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  575. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  576. // nonlinearities of both the junction angle and junction velocity.
  577. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  578. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  579. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  580. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  581. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  582. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  583. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  584. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  585. // Skip and use default max junction speed for 0 degree acute junction.
  586. if (cos_theta < 0.95) {
  587. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  588. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  589. if (cos_theta > -0.95) {
  590. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  591. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  592. vmax_junction = min(vmax_junction,
  593. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  594. }
  595. }
  596. }
  597. #endif
  598. // Start with a safe speed
  599. float vmax_junction = max_xy_jerk/2;
  600. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  601. vmax_junction = max_z_jerk/2;
  602. vmax_junction = min(vmax_junction, block->nominal_speed);
  603. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  604. vmax_junction = min(vmax_junction, max_e_jerk/2);
  605. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  606. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  607. if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  608. vmax_junction = block->nominal_speed;
  609. }
  610. if (jerk > max_xy_jerk) {
  611. vmax_junction *= (max_xy_jerk/jerk);
  612. }
  613. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  614. vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
  615. }
  616. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  617. vmax_junction *= (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]));
  618. }
  619. }
  620. block->max_entry_speed = vmax_junction;
  621. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  622. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  623. block->entry_speed = min(vmax_junction, v_allowable);
  624. // Initialize planner efficiency flags
  625. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  626. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  627. // the current block and next block junction speeds are guaranteed to always be at their maximum
  628. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  629. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  630. // the reverse and forward planners, the corresponding block junction speed will always be at the
  631. // the maximum junction speed and may always be ignored for any speed reduction checks.
  632. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
  633. else { block->nominal_length_flag = false; }
  634. block->recalculate_flag = true; // Always calculate trapezoid for new block
  635. // Update previous path unit_vector and nominal speed
  636. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  637. previous_nominal_speed = block->nominal_speed;
  638. #ifdef ADVANCE
  639. // Calculate advance rate
  640. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  641. block->advance_rate = 0;
  642. block->advance = 0;
  643. }
  644. else {
  645. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  646. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  647. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  648. block->advance = advance;
  649. if(acc_dist == 0) {
  650. block->advance_rate = 0;
  651. }
  652. else {
  653. block->advance_rate = advance / (float)acc_dist;
  654. }
  655. }
  656. /*
  657. SERIAL_ECHO_START;
  658. SERIAL_ECHOPGM("advance :");
  659. SERIAL_ECHO(block->advance/256.0);
  660. SERIAL_ECHOPGM("advance rate :");
  661. SERIAL_ECHOLN(block->advance_rate/256.0);
  662. */
  663. #endif // ADVANCE
  664. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  665. MINIMUM_PLANNER_SPEED/block->nominal_speed);
  666. // Move buffer head
  667. block_buffer_head = next_buffer_head;
  668. // Update position
  669. memcpy(position, target, sizeof(target)); // position[] = target[]
  670. planner_recalculate();
  671. st_wake_up();
  672. }
  673. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  674. {
  675. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  676. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  677. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  678. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  679. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  680. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  681. previous_speed[0] = 0.0;
  682. previous_speed[1] = 0.0;
  683. previous_speed[2] = 0.0;
  684. previous_speed[3] = 0.0;
  685. }
  686. void plan_set_e_position(const float &e)
  687. {
  688. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  689. st_set_e_position(position[E_AXIS]);
  690. }
  691. uint8_t movesplanned()
  692. {
  693. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  694. }
  695. void allow_cold_extrudes(bool allow)
  696. {
  697. #ifdef PREVENT_DANGEROUS_EXTRUDE
  698. allow_cold_extrude=allow;
  699. #endif
  700. }